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a b s t r a c t

In this work, we develop a methodology to combine the Ensemble Kalman filter (EnKF) and
the level set parameterization for history matching of facies distribution. With given prior
knowledge about the facies of the reservoir geology, initial realizations are generated by
commonly used software as the prior guesses of the unknown field. Furthermore, level
set functions are used to reparameterize these initial realizations. In the reparameteriza-
tion process, a representing node system is set up, on which the values of level set func-
tions are assigned using Gaussian random numbers. The mean and the standard
deviation of the Gaussian random numbers are designed according to the facies proportion,
and the sign of the random numbers depends on the facies type at the representing nodes.
The values of the level set functions at the other grid nodes are obtained by linear interpo-
lation. The level set functions on the representing nodes are the model parameters of the
EnKF state vector and are updated in the data assimilation process. On the basis of our
numerical examples for two-dimensional reservoirs with two or three facies, the proposed
method is demonstrated to be able to capture the main features of the reference facies
distributions.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The rock properties of a reservoir are crucial factors for determining its production behavior. A typical reservoir consists of
several distinct rock units (which are usually called facies), each of which may have relatively uniform properties such as
permeability and porosity. Owing to the significantly different properties between facies, the fluid flow is strongly impacted
by the facies distribution. If the properties of each facies are known, a good estimation of the facies boundary is extremely
important for predicting or optimizing the future reservoir production.

Information of a reservoir usually comes from production wells, which may include static facies type observations and
dynamic production records. There exist two different types of methods for estimating the facies distribution by assimilating
the observation data: Gradient-based method and Monte Carlo method. The level set method is a typical gradient-based
method [2,14,17–19,21], in which facies distribution is represented by level set functions and the facies boundaries are
evolved to reduce an objective function. In these optimization procedures, gradient calculations are needed and obtained
by either Jacobian method or adjoint method. The level set method was originally used for tracing the evolution of interfaces
[18,19]. Using the level set method for permeability estimation can also be found in the literature [2,17,21].
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Ensemble Kalman filter (EnKF) is a Monte Carlo approach for history matching of production data [6,7,9]. In the EnKF, a
large number of initial realizations are generated as the prior guesses of the unknown field. At the data assimilation steps,
each realization will be updated based on the correlation between the observation and the parameters. The EnKF is only opti-
mal for linear problem with Gaussian statistics. The Gaussian statistics limitation is a major challenge for the application of
the EnKF to the estimation of facies distributions, because the facies distributions are usually multimodal. Truncated plurig-
aussian is one of the approaches to parameterize the facies distribution [1,8,12,13,23]. That is, the facies distribution is gen-
erated by truncating two or more Gaussian random fields into separate regions that denote different facies types. In [13], Liu
and Oliver suggested using two Gaussian random fields in the state vector of EnKF instead of the rock properties because it is
more likely to satisfy the Gaussian distribution assumption. The application of truncated plurigaussian method is extended
to a 3D reservoir in [1] and the authors also proposed to decouple the assimilation of production and facies data where pro-
duction data are assimilated first and facies data afterward in order to avoid improper weighting of the production data that
could lead to large changes in the updated state variables. In [23], a different approach to ensure the ensemble members
honor facies observations at wells is proposed and the difficulty of their work is the larger nonlinearity in the data. Truncated
plurigaussian is suitable for geometries with two-point statistics, which can honor the facies proportions and indicator vari-
ograms. For curvilinear geometries, however, truncated plurigaussian is not a proper option because a representation of such
geometries may require multiple-point statistics [20].

Other approaches on using EnKF to estimate facies distribution include: Gaussian mixture models [5], discrete cosine
transform [10], and level set methods [16]. In [5], Dovera and Della Rossa proposed a new analysis scheme in which they
derived expressions for the conditional means, conditional covariance, and weights for the Gaussian mixture model to make
the EnKF formulation suitable for Gaussian mixture model. In [10], Jafarpour and McLaughlin used discrete cosine transform
(DCT) to parameterize both the state variables and model parameters and the coefficients of the retained cosine basis func-
tions were updated with EnKF. The updated model parameters and state variables were then constructed from these updated
coefficients. In [16], Moreno and Aanonsen proposed to combine the level set method with EnKF. In their work, they assumed
there exist a ‘‘best guess” model and the facies boundaries be implicitly modeled through a level set function. The boundary
velocity was modeled as a Gaussian random field and updated with the EnKF. At each updating time step, the new updated
velocity field was applied to the same original level set function to get new realizations. The results of this method depend on
the quality of the ‘‘best guess” model: If it cannot represent the true geology properly it is difficult to get good results.

For the EnKF method, the quality of the initial realizations is an important factor that will impact the history matching
results. The initial realizations should honor the statistical feature of the geologic formation and also obey the Gaussian sta-
tistics limitation of EnKF, which is especially difficult when dealing with curvilinear geometries. Regardless of the Gaussian
statistics limitation, generating random geometries with two-point or multiple-point statistics can be performed with the
aid of existing software [3,4,20]. However, the outputs of these software packages are simple indicator fields, which are def-
initely not Gaussian random fields. How to utilize these initial representations of the unknown random field to perform his-
tory matching is the main objective of the present work. In this study, we combine the EnKF with the level set
parameterization for history matching of the facies distribution. With the prior knowledge about the facies distributions, ini-
tial realizations are generated by commonly used software. Reparameterization of these realizations is performed with the
aid of level set functions. We first design a representing node system and generate random numbers for the level set function
values at these nodes. For each realization, we generate a set of Gaussian random numbers. The mean and the standard devi-
ation of the Gaussian random numbers are designed according to the facies proportion and the sign of the random numbers
depends on the facies type at the representing nodes. The values of level set functions at the grid nodes other than the rep-
resenting nodes are obtained by linear interpolation. The level set functions on the representing nodes are the model param-
eters of the EnKF state vector and will be updated by assimilating both the static facies type observations and dynamic
production records. When the first EnKF update is finished, a second EnKF update may be performed if needed.

This paper is organized as follows: We introduce the forward model and the EnKF methodology in Sections 2 and 3,
respectively. In Section 4, we discuss the parameterization procedure in detail. In Section 5, we introduce the model for
updating the facies distribution using the EnKF. The case studies are given in Section 6. Some conclusions are drawn in Sec-
tion 7.

2. Forward model

We consider a two-phase system with water and oil, whose basic flow equations are given as:

C1r �
kro

loBo
kðrPoðx; y; z; tÞ � corZðx; y; zÞÞ

� �
¼ /

C2

@

@t
So

Bo

� �
þ qoðx; y; z; tÞ; ð1Þ

C1r �
krw

lwBw
kðrPwðx; y; z; tÞ � cwrZðx; y; zÞÞ

� �
¼ /

C2

@

@t
Sw

Bw

� �
þ qwðx; y; z; tÞ; ð2Þ

subject to the constraint So + Sw = 1. The subscripts o and w stand for oil and water phases, respectively; C1 and C2 are unit
conversion factors for converting Eqs. (1) and (2) to oil field units; Bo and Bw are the oil and water formation volume factors;
l is the viscosity; c is the specific density; / is the porosity; Z is the vertical distance from a datum level; q is the sink or
source term; kr is the relative permeability; k is the intrinsic permeability; P is the pressure; and S is the saturation.
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The rock property fields such as permeability and porosity are crucial input parameters for this forward model. The mea-
surements of these fields are usually obtained from wells. Owing to the limited number of measurements, the rock proper-
ties fields can be only depicted with high uncertainty. In this study, the rock property fields are represented as zones with
unknown boundaries. The purpose of this study is to identify the boundary while assuming that the rock properties for each
facies are known. The details will be given in the following sections.

3. Ensemble Kalman filter

The ensemble Kalman filter is a Monte Carlo method and it propagates an ensemble of initial reservoir realizations along
time to assimilate data. The ensemble of state vectors, W, denoted by

W ¼ fy1; y2; . . . ; yNeg 2 RNy�Ne ; ð3Þ

where Ne denotes the total number of realizations; yi, i = 1, . . . ,Ne, are state vectors. A typical state vector consists of model
parameters (m), state variables (u), and observations (d). At a certain time step tk for k = 1, . . . ,Nt, the state vector is expressed
as

yk ¼
m
uk

dk

8><
>:

9>=
>; 2 RNmþNuþNd : ð4Þ

Model parameters are variables that are not varying in time, which may include rock properties such as permeability and
porosity. State variables are time-dependent variables, which may include pressure and saturation for all phases. The obser-
vations may include production records and facies type observations.

The main procedure for EnKF contains two sequential steps: the forecast step and the update step. The forecast model is
performed on each ensemble member independently:

yp;j
k ¼ Fðya;j

k�1Þ; j ¼ 1; . . . ;Ne; ð5Þ

where F(�) is a forecast operator, representing the reservoir simulator in our study; superscripts p and a denote the ‘‘pre-
dicted” and ‘‘analyzed” states, respectively. When the observation data are available, the update step is done via

ya;j
k ¼ yp;j

k þ Kkðdj
k � Hkyp;j

k Þ; j ¼ 1; . . . ;Ne; ð6Þ

where K is the Kalman gain matrix; H is the observation operator, which represents the relationship between the state vector
and the observation vector:

Hk ¼ ½0 I�; ð7Þ

where 0 is an Nd � (Nm + Nu) matrix with all 0’s as its entries; I is an Nd � Nd identity matrix, and dj
k is the observation data at

current time plus observation noises

dj
k ¼ dobs;k þ ej

k; j ¼ 1; . . . ;Ne: ð8Þ

The ensemble Kalman gain takes the following form,

Kk ¼ Cyp
k
HT

k HkCyp
k
HT

k þ Cdk

� ��1
; ð9Þ

where Cy denotes the state cross-covariance matrix, Cd is the error covariance matrix, and the superscript T stands for matrix
transpose. The cross-covariance matrix can be calculated using standard statistical formula,

Cyp
k
� 1

Ne � 1

XNe

n¼1

yp;n
k � hy

p
ki

� 	
yp;n

k � hy
p
ki

� 	T
n o

: ð10Þ

Since only partial entries of the cross-covariance are needed in Eq. (9), one does not need to calculate the entire matrix.
The EnKF is only optimal for linear problem with Gaussian statistics in the limit of infinitely many model realizations. The

major difficulty in applying the EnKF to history matching of the facies distribution is the highly non-Gaussian property of the
parameter fields. The parameter fields considered here, such as permeability and porosity, are discontinuous, zonally con-
stant functions with the assumption that the properties inside each facies are constant. Reparameterization of the facies dis-
tribution is necessary to make the EnKF algorithm applicable under this condition.

H. Chang et al. / Journal of Computational Physics 229 (2010) 8011–8030 8013



Author's personal copy

4. Reparameterization of the parameter field

4.1. Level set method and the representation of the parameter field

The idea of the level set method is briefly introduced here and more detailed descriptions of the method can be found
elsewhere [18,19]. Let C be a closed curve in domain X and it partitions X into two regions D and DC (DC = X nD is the com-
plement of D). We define a function U that satisfies the following properties:

UðxÞ > 0 for x 2 D;

UðxÞ < 0 for x 2 DC ;

UðxÞ ¼ 0 for x 2 C;

ð11Þ

C is the zero level set of the function U, and U is called the level set function for C. The unit normal to the surface, n, can
be given by

n ¼ rU
jrUj ; ð12Þ

where jrUj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rU � rU
p

. The conventional level set methods have been popular in tracking, modeling and simulating the
motion of dynamic interfaces. The motion of the interface is determined by a velocity field, v, which is a function of position,
and the evolution can be described as following

@U
@t
þ v � rU ¼ 0; Uðx;0Þ ¼ U0ðxÞ; ð13Þ

where U0(x) denotes the initial level set function and t denotes the artificial time. According to Eq. (12), Eq. (13) can be
rewritten using the normal velocity, vn as

@U
@t
þ vn � jrUj ¼ 0; Uðx;0Þ ¼ U0ðxÞ; ð14Þ

where vn ¼ v � rU
jrUj. Eq. (14) is called the level set equation and the solution of this equation over artificial time describes the

evolution of the interface.
The level set method has also been used for inverse problems dealing with the reconstruction of shapes [2,14,17,21]. For

this kind of problems, an objective function needs to be designed first and the gradient method is used to determine the
velocity of evolving boundary such that the objective function will be reduced sequentially. In this study, different from
the conventional level set method we only use the level set function to represent the parameter fields without involving
solution of the let set equation.

For a reservoir with two facies, the parameter field p(x) can be written as the following form

pðxÞ ¼ p1HðUðxÞÞ þ p2ð1� HðUðxÞÞÞ; ð15Þ

where H is the Heaviside function, the coefficients p1 and p2 are the parameter values of the facies.
If p(x) has more than two different constant values, more level set functions are needed to represent the parameter field.

With n level set functions, the domain can be partitioned into 2n regions, and the parameter field p(x) can be represented as
[2]:

pðxÞ ¼
X2n

j¼1

pjWjðU1; . . . ;UnÞ; ð16Þ

where

WjðxÞ ¼
Yn

r¼1

RjðUrðxÞÞ; RjðUrÞ ¼
HðUrÞ if bj

r ¼ 0;

1� HðUrÞ if bj
r ¼ 1;

(
ð17Þ

and bj
r is the rth element in the binary expansion of (j � 1), written in the form of ðbj

1; b
j
2; . . . ; bj

nÞ.

4.2. Parameterization of the level set functions

In this study, we assume the rock properties of each facies, such as permeability and porosity, are constant and known.
Under this assumption, the fluid flow will be only impacted by the spatial distribution of the different facies presented in the
reservoir. As mentioned in the pervious subsection, the spatial distribution of the facies can be described by level set func-
tions. Thus the level set functions, defined by their values on all grid nodes, can be used as the model parameters instead of
the rock property fields.

Because of the limitations of the EnKF methodology on Gaussian statistics of parameter values, the first issue that needs
to be addressed is how to construct initial realizations of level set functions that follow Gaussian statistics, which is required
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in updating the level set functions with the EnKF. A natural idea is to assume that the values of level set functions at all grid
nodes, {U(xj)}, be Gaussian random variables. However, this assumption would lead to three difficulties: (1) how to alleviate
the non-uniqueness property of the level set function because the facies type at each grid node is only determined by the
sign of the level set function value at that node and the magnitude of the function value is irrelevant; (2) how to build
the correlation of the random variables to make the parameter field be jointly Gaussian distribution; (3) how to honor
the prior knowledge of the unknown field such as the facies proportion, mean length, and the indicator correlation. The prior
knowledge of the unknown field can be obtained by geostatistics.

In order to alleviate the non-uniqueness of the level set function, we use a treatment similar to the idea of master point
technique [11,22]. Instead of using the level set function values at all the grid nodes, we only choose part of the grid nodes as
representing nodes and take the values of level set functions at these representing nodes as model parameters. The level set
function values at the representing nodes are assumed to be Gaussian random variables and the function values at the other
nodes are obtained by numerical interpolation. The prerequisite of this scheme is that the numerical grid size is much smal-
ler than the average facies size, which is usually the case for a numerical model. A 2D example is given here to demonstrate
the idea. We consider a rectangular domain of lengths Lx and Ly in x and y directions, respectively, and there are Nx and Ny

grid blocks in each direction. Suppose we have Mx and My representing nodes in x and y axis, respectively, with the con-
straints of Mx 6 Nx and My 6 Ny. Accordingly, there are Mx �My representing nodes in the 2D domain. With the given values
at the representing nodes, the level set function values at the remaining nodes can be obtained by using the following
equation

Uðx; yÞ ¼
XMx

i¼1

XMy

j¼1

Uðxi; yjÞI iðxÞI jðyÞ; x 2 ½0; Lx� and y 2 ½0; Ly�; ð18Þ

where fI jg are interpolation basis functions. Here we choose linear interpolation because of the following considerations.
First, the representing nodes are relatively dense in the domain, which will be seen in the later section. In addition, linear
interpolation will significantly simplify the relationships among the model parameters, the level set function values on
the representing nodes, and the parameter field. This simplification will be useful when performing the EnKF update.

By the linear interpolation, the magnitude of the level set function value at each representing node will affect the facies
types at the surrounding grid nodes. That is, the level set function at each representing node has an impact region. This will
help alleviate the non-uniqueness behavior. Also, if the distance between the representing nodes is properly designed such
that the level set function values on nearby representing nodes are uncorrelated or weakly correlated, we can simply treat
the level set function on the representing nodes independently without incurring too much error. How to choose the repre-
senting node system and how to honor the prior knowledge will be discussed later.

5. Updating Facies distributions with EnKF

We first consider a two-facies reservoir where the facies distribution can be described by one level set function, U(x). The
model parameters are the function values at the representing nodes, fUðxjÞgMx�My

j¼1 , which are assumed to be Gaussian random
variables. The state variables contain pressure (P) and saturation (Sw) at all grid nodes. Then the state vector takes the fol-
lowing form

yj ¼ fUðxjÞgT ;PT ; ST
w;d

T
h iT

j
; ð19Þ

here the observations, d, include the production data from the wells such as oil production rate and bottom hole pressure
and also include the facies type observations at the well locations.

The facies type observations at well locations are non-numerical data. One solution to this problem is to introduce a
proxy, f, which is defined as [1,13]

f ¼
0; Fsim ¼ Fobs;

1; Fsim – Fobs;

�
ð20Þ

where F denotes the facies type, and subscripts sim and obs denote simulation and observation, respectively.
At the data assimilation steps, a facies matching loop is usually needed to make sure that each ensemble member matches

the facies type observations at the well locations [13]. Here we take the method described in [1]: At the data assimilation
steps, we first assimilate the production data and then iterate on the facies constraint if the facies type observations are vio-
lated after the EnKF update. In performing the assimilation of the facies observation data, the state vector is redefined as [1]

yj ¼ fUðxjÞgT
; FT

h iT

j
: ð21Þ

The advantage of doing this is that the enforcement of facies constraint will not affect the updated state variables. This
kind of facies constraint enforcement procedure does not need to rerun the forward model, thus resulting in high efficiency.

If the reservoir has more than two facies, the above procedure is the same except for a need of more level set functions.

H. Chang et al. / Journal of Computational Physics 229 (2010) 8011–8030 8015
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6. Case studies

6.1. Simulation model

A synthetic two-dimensional reservoir model is used here to test the performance of the methodology described above. It
is a five-spot pattern with an injector located at the center and four producers located at the corners. The reservoir is a square
with side length 1500 ft, and is evenly divided into 50 grid blocks in both directions. The reservoir has a thickness of 60 ft and
located at a depth of 4000 ft. The producer is controlled by the BHP constraint of 3000 psi. The injector is controlled by the
surface flow rate target of 5000 stb/day. The injection starts at the first day of the production. The simulation lasts for
900 days. The observation data include facies type observations at the well locations and production data (which are oil pro-
duction rate and water cut of the producers as well as BHP of the injector). The observations are available every 30 days.

The perturbation of observation by adding additive noise is necessary to avoid divergence of the filter [6,7]. The measure-
ment errors are drawn from a zero-mean Gaussian distribution. For the production data, the standard deviation is set to 1% of
the actual measurement. No noise has been added for facies type observations.

6.2. Case 1: Two facies case with given facies proportion and indicator correlation

In this case, we consider a two-facies reservoir. The permeability of facies 1 and facies 2 are 300 md and 50 md, respec-
tively. The porosity of facies 1 and facies 2 are 25% and 20%, respectively. About the prior knowledge of the facies distribu-
tion, we assume that the facies proportion and the correlation of the indicator random variables are known. Here, the
indictor function is a traditional tool used for depicting facies distribution. The definition of indicator function, Ii(x), is

IiðxÞ ¼
1 if facies i occurs at location x

0 otherwise:

�
: ð22Þ

Unlike the continuous level set functions, the indicator function uses one or zero to denote whether or not a specific facies
occurs. An indicator variogram is usually used for depicting a facies distribution.
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Fig. 1. Initial realizations generated by SISIM program (white for facies 1 and black for facies 2).
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In this example, we assume that two facies have equal proportion and the indicator variogram model is Gaussian. With
the given knowledge, initial realizations of the facies distribution can be generated using existing software. For example, the
SISIM program of the GSLIB Fortran library [4] and Transition Probability Geostatistical Software (T-PROGS) [3] can be used
to generate geometries with two-point statistics and the SNESIM program [20] is suitable to generate geometries with multi-
ple-point statistics. In this study, we choose the SISIM program to generate the initial realizations and some realizations are
illustrated in Fig. 1. It is seen that the realizations are quite different with each other even though they follow the same sta-
tistical characteristics. The initial model parameter ensemble of the EnKF process is obtained by reparameterization of these
realizations. The reparameterization procedure is illustrated in Fig. 2, where Fig. 2a shows one realization generated by SI-
SIM. As discussed before, the first step of the reparameterization is to design a representing node system for the level set
functions. The representing node system should be designed in accord with the characteristics of the facies distribution. Here
we use a constant interval representing node system and the interval width is an important parameter that needs to be cho-
sen wisely. The representing nodal interval determines the total number of representing nodes, which is the degree of free-
dom of the model parameters as shown in Eq. (19). A dense representing node system will help the reconstruction of the
initial realization more accurately, but it will increase the degree of the freedom of the model parameters and also decrease
the impact region of each representing node, which will increase the difficulties in the data assimilation process. Also in or-
der to simplify the problem, we would like the correlation with respect to the representing nodes interval to be small. Then
the random variables on the representing nodes can be treated independently. As investigated in [15], under some condi-
tions, a two-facies reservoir with equal mean length, the correlation length of the indicator random variables is half of
the facies mean length. Although the correlation is not strictly zero when the separation distance equals the correlation
length, the random variables are only weakly correlated with that separation distance. Thus we set the interval of the rep-
resenting nodes as half of the facies mean length in each direction. If the mean length of each facies is different, we use the
smallest mean length as the reference for the choosing the representing nodes interval. For the case considered here, the two
facies have the same mean length of about 300 ft in both x and y directions and the representing nodal interval is chosen to
150 ft in both x and y directions. The representing node system is shown in Fig. 2b.
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(a) one realization
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(d) reconstructed realization

Fig. 2. The procedure of reparameterization: (a) the SISIM realization; (b) the representing node system; (c) the facies distribution with representing nodes;
and (d) the reconstructed facies distribution.
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After the representing nodes are designed, the next step is generating the level set function values on these representing
nodes. We generate Gaussian random numbers for all representing nodes, fUðxjÞgMx�My

j¼1 , independently. The mean and the
standard deviation of the Gaussian random numbers should be designed according to the facies proportion and the sign
of the random numbers depends on the facies type at the representing nodes as shown in Fig. 2c. Actually we perform
the following

generate UðxjÞ that satisfy UðxjÞ 2 Nðu;rÞ and UðxjÞ < 0 if facies 1 occurs at location xj

generate UðxjÞ that satisfy UðxjÞ 2 Nðu;rÞ and UðxjÞ > 0 if facies 2 occurs at location xj;

�
ð23Þ
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Fig. 3. The reference (a) and four selected conditional realizations (b, c, d, and e). The red circles denote well locations, and injector is at the center and the
producers at the corners. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where u and r denote the mean and the standard deviation of the Gaussian random variables.
Because the facies proportion of the two facies is the same in this case, the mean of the Gaussian random variables is zero.

We set the standard deviation of the Gaussian variables to be 0.5. The standard deviation of the Gaussian variables should
not be too large because otherwise some of the generated random numbers may be far away from zero and it is not easy to
change sign after update, which means difficult to adjust facies type for the large random numbers. Also, if the standard devi-
ation is too small the facies type is too easy to be adjusted even if there is only a small innovation. After we get the values for
fUðxjÞgMx�My

j¼1 , the level set function values on all the grid nodes, fUðxjÞgNx�Ny

j¼1 , are interpolated using Eq. (18). With the level set
function, the facies distribution of the reservoir will be determined as shown in Fig. 2d. By comparing Fig. 2d with Fig. 2a, we
can see that the reconstructed facies distribution looks quite similar to the original facies distribution. Since the realizations
generated by SISIM can honor the prior knowledge, the reconstructed realizations inherit this property. With such a recon-
struction, we can parameterize the facies distribution by the level set function values on the representing nodes. In the his-
tory matching process, the observation data are assimilated to update the level set function values on the representing nodes
to adjust the facies distribution.

The facies distribution shown in Fig. 2d is selected as the reference field. And 100 more realizations generated by condi-
tional SISIM simulations are reconstructed to make up the initial ensemble of the EnKF. Here we use conditional SISIM sim-
ulations to generate the initial realizations that honor the facies type observations. Four conditional realizations are
illustrated in Fig. 3, from which we can see that although these realizations have the same facies type at the well locations
as the reference, they still look quite different to the reference. Then we perform the reservoir simulation and assimilate the
production data when they are available. At each data assimilation step, if the facies types are mismatched at the well loca-
tions for some realizations after assimilating the production data, the facies matching loop will be performed. Four updated
realizations are shown in Fig. 4. By comparing with Fig. 3, we can see that great improvements can be found after assimi-
lating the production data and the updated realizations resemble the major patterns in the reference. It is seen that, the pro-
duction data is more useful than the facies data. This is because the impact region of a facies data is limited by the facies size
and is thus usually much smaller than that of a production data, especially the oil production rate that provides average
information between the injector and producer. Fig. 5 shows the match to the oil production rate from the initial ensemble
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Fig. 4. The four realizations (shown in Fig. 3) after assimilating the production data.
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Fig. 5. The match to the oil production rate from the initial ensemble and the updated ensemble. The red curve depicts the responses computed using the
reference parameter field, and the black curves represent the responses from the ensemble. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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and the updated ensemble. We can see that the matches are improved significantly after the EnKF update. Fig. 6 shows the
mean and standard deviation of the initial and updated level set function realizations at the representing nodes along the
profile y = 15 ft. From Fig. 6a, we can see that the mean of the initial realizations is nearly zero and the standard deviation
is around 0.5, which are exactly the statistics we prescribed for the random variables on the representing nodes. The statis-
tics of the updated realizations is shown in Fig. 6b. We can see that the mean of the level set function realizations are no
longer zero because the updated realizations will try to match the facies types on the representing nodes in the reference
field. The standard deviation of the updated realizations decreases significantly because all these updated realizations be-
come close to the true field. Fig. 7 illustrates the probabilistic map for facies 1, computed from all updated realizations. In
this map, the white shade corresponds to a probability of 1 and the black shade to zero probability that facies 1 is observed
at a specific location in the domain. The different shades of gray represent probability values between zero and one. For this
case, the true probabilistic map for facies 1 is the same as Fig. 3a. By comparison, we can see that the estimated probabilistic
map is able to capture the main feature of the true probabilistic map.

In designing the representing node system, we suggested in Section 4 that the system should not be too dense. In order to
test this, here we design a case with a denser representing node system. The representing nodal interval for this case is set to
be half of the previous case, being 75 ft. Then the same conditional SISIM realizations are reparameterized to get the model
parameters for EnKF. We next perform the EnKF update. Four updated realizations from EnKF are shown in Fig. 8. We can see
that, the results are not satisfactory and there are too much small scale features. One reason for this behavior is that we treat
the random variables on the representing nodes independently, which is not reasonable for a dense representing node sys-
tem. Also a dense representing node system will decrease the impact region of each representing node.

6.3. Case 2: Two facies case with given facies proportion and mean length

In the previous subsection, we tested the performance of the proposed method using a case with facies proportion and
indicator correlation given as prior knowledge. Such prior knowledge is traditionally obtained by geostatistics and the infor-
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Fig. 7. The probabilistic map for facies 1 computed from all updated realizations.
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Fig. 6. The mean and standard deviation of the level set function realizations on the representing nodes at y = 15 ft: (a) from the initial realizations and (b)
from the updated realizations.
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mation of a reservoir is usually from well logs. Since the wells in a reservoir are usually very sparse, it is hard to have a good
understanding of the reservoir characteristics. In this subsection, we would like to relax the prior knowledge. That is, we
investigate a case with given facies proportion and mean length, but no prior information about the indicator correlation
function. This is the condition when we do not know the indicator variogram or when the facies geometries cannot be char-
acterized by a two-point statistics. The software, SISIM, used in previous subsection is not applicable here because it needs to
input the indicator variogram information. Although some other software can be chosen as alternatives, here we do not use
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Fig. 9. The reference field for case 2 (white for facies 1 and black for facies 2).
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Fig. 8. Four updated realizations with dense initial representing nodes.
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the reconstruction procedure to generate the reference and the initial ensemble. We want to investigate the performance of
the proposed method under the condition that the reference and the initial ensemble are obtained from different procedures
that will result in large differences between them. About the prior knowledge of this case, the facies mean length in a specific
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Fig. 11. The probabilistic map for facies 1 computed from all realizations after (a) the first and (b) the second EnKF update.
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Fig. 10. The 25th realization: (a) initial, (b) after the first EnKF update, and (c) after the second EnKF update.

H. Chang et al. / Journal of Computational Physics 229 (2010) 8011–8030 8023



Author's personal copy

direction is the average length of each occurrence of a facies, and the facies proportion can be computed from the mean
lengths. How to generate the initial ensemble that can honor the prior knowledge is the first issue to be addressed here.

The procedure of generating initial ensemble is similar to that described for the previous case. That is, we need to design
the representing node system first and then to generate level set function values on these representing nodes. After calcu-
lating the level set function values on the rest grid nodes by linear interpolation, the facies distribution is determined. In this
case, we do not reconstruct any existing realizations. Instead, we try to honor the prior knowledge of statistics. We first dis-
cuss how to generate the level set function values on the representing nodes following the same proportion as the reference.
The probability of each facies occurring at each representing node depends on the mean and standard deviation of the Gauss-
ian random variable. Since we use linear interpolation to get the level set function values on the other grid nodes, the pro-
portions of each facies in the fields depend on the statistics of these Gaussian random variables on the representing nodes. If
the proportion is given as prior knowledge, the mean and standard deviation should be designed accordingly.

In Fig. 9, a synthetic facies distribution with proportions of facies 1 and facies 2 being 40.8% and 59.2%, respectively, is
illustrated. If a negative level set function value denotes facies 1, we have

PfUðxjÞ < 0g ¼ 40:8%;

PfUðxjÞ > 0g ¼ 59:2%

�
ð24Þ

Denote the mean and standard deviation of U(xj) as l and r, respectively. Then we have

1ffiffiffiffiffiffiffi
2p
p

r

Z 0

�1
e�
ðt�lÞ2

2r2 dt ¼ 0:408 ð25Þ

If we set r = 0.5, l can be obtained by interpolation, which is approximately 0.116 for this case.
The second issue is how to design a representing node system to honor the mean length. Because we do not reconstruct

any existing realizations, in each direction, the facies mean length, l, only depends on the representing nodes interval, h and
l(h) is a monotonic function. We first let h = h0, with this initial choice of h, we generate N set of Gaussian random numbers
for the representing nodes and interpolate them to get the facies distribution for each realization. In each direction, the facies
mean length of each realization is calculated by statistics and denoted by l1(h0), . . . , lN(h0). Let lmean ¼ 1

N

PN
i¼1liðh0Þ, and denote

the mean length of the reference field and the error tolerance as ltrue and e, respectively, if jlmean � ltruej < e, then h0 is the
interval value we need. Otherwise, if lmean > (or<) ltrue, we decrease (or increase) h0 by Dh step by step. At step n, if we have
jlmeanðh0 � nDhÞ � ltruej < e (or jlmean(h0 + nDh) � ltruej < e), then h0 � nDh (or h0 + nDh) is our choice. Otherwise, continue this
procedure until getting lmean(h0 � nDh) > ltrue and lmean(h0 � (n + 1)Dh) < ltrue (or lmean(h0 + nDh) < ltrue and lmean(h0 +
(n + 1)Dh) > ltrue). Then we get the region that contains the solution as [h0 � (n + 1)Dh, h0 � nDh] (or [h0 + nDh, h0 +
(n + 1)Dh]). In the following, we can only check the midpoint of the region to get a new solution region, which is half of
the previous region. With this procedure, according to the convergence criteria, we can refine the solution.

As shown in Fig. 9, the smaller mean length (the mean length of the white shade) is about 2L/5. Following the above algo-
rithm, the representing nodal interval is set to a half of mean length, L/5. We design this reference field purposely, which
makes it different from the initial ensemble. In the reference field, these two facies are obviously extended in the NW-SE
direction. This fact is assumed not known a priori and thus not accounted for when generating the initial ensemble. The
25th initial realization is shown in Fig. 10a, the white shade extends in the x direction, which is different from the reference
field. Fig. 10b shows the 25th updated realization, from which we can see that the updated realization is closer to the ref-
erence but the result is not satisfactory. In order to get a better result we perform a second EnKF updated. The initial real-
izations of the second EnKF update are the updated realizations of the first EnKF update and the update process goes from
time zero to the end of the simulation. After the second EnKF update, the 25th realization is shown in Fig. 10c, from which we
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Fig. 12. The reference field for case 3 (white for facies 1, gray for facies 2, and black for facies 3).
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can see that the updated realization has a feature very close to the reference. So simply repeating the EnKF update can help to
get better result, but it doubles the computational effort at the same time. The probabilistic maps for facies 1 of the updated
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Fig. 13. The left column (a, c, e, and g) shows four initial realizations; the right column (b, d, f, and h) the corresponding realizations after two EnKF updates.
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realizations after the first and the second EnKF update are shown in Fig. 11. We can see that, after the first EnKF update the
probabilistic map captures the main feature in the true probabilistic map and the second EnKF update helps to improve the
result.

6.4. Case 3: Three facies case with given proportion and indicator correlation

The prior knowledge of the facies distribution in this case is the same as in case 1. The difference is that there are three
facies, which makes the geometry more complex. The permeability of facies 1, facies 2, and facies 3 are 900 md, 450 md, and
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Fig. 14. The true probabilistic maps for facies 1, facies 2, and facies 3 (a, c, and e) and the corresponding probabilistic maps of updated realizations (b, d, and
f).
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50 md, respectively. The porosity of facies 1, facies 2, and facies 3 are 30%, 22%, and 15%, respectively. Two level set functions,
U1(x) and U2(x), are needed to describe the facies distribution with the following definition,

U1ðxÞ > 0; U2ðxÞ > 0; if facies 1 occurs at location x;

U1ðxÞ > 0; U2ðxÞ < 0; if facies 2 occurs at location x;

U1ðxÞ < 0; if facies 3 occurs at location x:

8><
>: ð26Þ

We use the same reconstruction procedure to obtain the reference and initial ensemble as described in case 1. The rep-
resenting nodes are selected to include all well location, which simplifies the iterative enforcement of the facies constraint.
The reference of this case is shown in Fig. 12. All the prior knowledge can be honored using the reconstruction procedure. In
the data assimilation step, the state vector takes the following form,

yj ¼ fU1ðxjÞgT
; fU2ðxjÞgT

; PT ; ST
w;d

T
h iT

j
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Fig. 15. The match to the production data from the initial ensemble (left column) and the updated ensemble (right column).
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Two level set function values on the representing nodes are updated at each data assimilation step. The sensitivity be-
tween each level set function and the observations will not be as strong as in the two facies case, which increases the dif-
ficulty in the updating process. Also the increased number of facies presented in a reservoir will aggravate the non-unique
relationship between the facies distribution and the reservoir production behavior.

Fig. 13 shows four initial realizations (the left column) and their corresponding updated realizations (the right column)
after two EnKF updates. It is seen that these initial realizations are conditioned on the facies type observations and thus have
the same facies types at the well locations as in the reference field. Besides the well locations, there are not many features in
common, reflecting a large variability of the initial realizations. After assimilating the production data, these realizations
have some similar features and look more like the reference field. Fig. 14 shows the true probabilistic maps for facies 1, facies
2, and facies 3 and the corresponding probabilistic maps computed from updated realizations. It is seen that the probabilistic
maps of updated realizations captures the main features of the true maps. The match to the production data from the initial
ensemble and the updated ensemble are shown in Fig. 15. It can be seen that the production profiles from the initial ensem-
ble have large variability, and such variability is significantly reduced after assimilating the production data.

7. Conclusions

In this study, we developed an approach for combining the EnKF and level set parameterization for history matching
of the facies distribution. With the prior knowledge about the facies distribution, the initial realizations can be generated
using existing software, and level set functions are used to reparameterize these realizations with a properly designed
representing node system. In the EnKF update process, the level set function values on the representing nodes are up-
dated to adjust the facies distributions. In the case studies, we investigated the proposed methodology for a two-dimen-
sional reservoir with two or three facies. The choice of the representing nodes is important for our method. We
discussed how to design a proper representing node system in the reconstruction procedure. The numerical results show
that the production data can be matched well and the main features of the reference fields can be captured by the real-
izations. Simply repeating the EnKF update process is showed to be able to help further reduce the variability of the
model parameters.
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